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Investigation into Adamantane-Based M2 Inhibitors with FB-QSAR

Hang Wei', Cheng-Hua Wang?®, Qi-Shi Du’”"", Jianzong Meng** and Kuo-Chen Chou’

!Editorial Board, Journal of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, China; *College of
Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, China; *College of
Life Science and Technique, Guangxi University, Nanning, Guangxi, 530004, China; ‘Nanning Fermentation and
Enzyme Engineering Research and Technique Center, Nanning , 530003, China; Gordon Life Science Institute, San

Diego, California 92130, USA

Abstract: Because of their high resistance rate to the existing drugs, influenza A viruses have become a threat to human
beings. It is known that the replication of influenza A viruses needs a pH-gated proton channel, the so-called M2 channel.
Therefore, to develop effective drugs against influenza A, the most logic strategy is to inhibit the M2 channel. Recently,
the atomic structure of the M2 channel was determined by NMR spectroscopy (Schnell, J.R. and Chou, J.J., Nature, 2008,
451,591-595). The high-resolution NMR structure has provided a solid basis for structure-based drug design approaches.
In this study, a benchmark dataset has been constructed that contains 34 newly-developed adamantane-based M2 inhibi-
tors and covers considerable structural diversities and wide range of bioactivities. Based on these compounds, an in-depth
analysis was performed with the newly developed fragment-based quantitative structure—activity relationship (FB-QSAR)
algorithm. The results thus obtained provide useful insights for dealing with the drug-resistant problem and designing ef-

fective adamantane-based antiflu drugs.
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L. INTRODUCTION

The outbreak of HSN1 avian influenza virus (AIV) in
Asia, Europe and Africa, with rapid spread and high mortal-
ity rate in human, has raised extensive concerns about a
pending global pandemic [1-4]. Even more seriously is that
the rapid mutation rate of the viruses will make it very diffi-
cult to contain the influenza outbreak, just like the Hispanic
case in 1918 and the Asian cases in 1957 and 1968. In the
early pandemic phase, the only treatments so far available
are with the neuraminidase inhibitors (NIs), oseltamivir and
zanamivir [3,5,6], or the M2 channel inhibitors (Mls), aman-
tadine and rimantadine [7,8].

As an integral membrane protein in the viral lipid enve-
lope, M2 is a pH-gated proton channel that consists of four
tightly packed transmembrane (TM) helices [9]. The M2
channel plays a key role in release of viral nucleoproteins
and preventing premature conformational rearrangement of
newly synthesized haemagglutinin during transport to the
cell surface. Blocking its proton conductance could effec-
tively control the viral replication [10,11]. The adamantane-
based drugs, amantadine and rimantadine [7,8], have been
used as first-choice antiviral drugs against community out-
breaks of influenza A for many years. But, recent reports
show that the resistance to these adamantane-based drugs in
humans, birds and pigs has reached more than 90% [12].
Therefore, we are challenged to develop new potent Mls
(M2 channel inhibitors) against the terrible viruses.
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Recently the long-sought 3D (three-dimensional) struc-
ture of the M2 proton channel was successfully determined
by high-resolution (nuclear magnetic resonance) spectros-
copy [9]. Such a milestone work has provided us with a solid
foundation to deal with the drug-resistant problem and de-
velop new potent drugs against the influenza viruses [13].

Many lines of evidences have indicated that computa-
tional approaches, such as structural bioinformatics [14-18],
molecular docking [19-24], molecular packing [25,26],
pharmacophore modeling [27,28], Mote Carlo simulated
annealing approach [29], protein subcellular location predic-
tion [30,31], identification of membrane proteins and their
types [32], identification of enzymes and their functional
classes [33], identification of GPCR and their types [34,35],
identification of proteases and their types [36,37], protein
cleavage site prediction [38-40], signal peptide prediction
[41,42], and QSAR (quantitative structure—activity relation-
ship) [43-51], can timely provide very useful information or
insights for both basic research and drug development and
hence are widely welcome by science community. The pre-
sent study is attempted to apply the newly developed frag-
ment-based QSAR, or FB-QSAR, to investigate the M2
channel in hope to provide useful insights for developing
efficient antiflu drugs.

II. MATERIALS AND METHODS

In recent years, a series of new adamantane-based com-
pounds were synthesized by an iterative structure-based
methods; some of the compounds thus obtained have shown
equal or better efficacies in comparison with the original
adamantane-based compounds: amantadine and rimantadine
[7,8,52]. Many useful insights can be gained about the M2-
inhibiting mechanism by studying the correlation of the

© 2009 Bentham Science Publishers Ltd.
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physicochemical properties of these compounds with their
inhibition activities (see, e.g., [13]). However, to the best of
our knowledge, no report has ever been seen in using QSAR
to study these new adamantane-based compounds.

Listed in Table 1 are 34 adamantane-based M2 inhibitors
against H3N2 influenza A virus that were collected from
four different sources [7,8,52,53] in the last 10 years. Since
the bioactivities from different sources were measured by
using different methods and concentration units, it is neces-
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sary to normalize these values. In view of this, the following
equation is introduced to normalize the bioactivity values:

pPICS0,, = 1 ()
log(100x 1C50__ 1)

where 1C50gmpe are the experimental bioactivities of MI
(M2 channel inhibitor) samples, pPIC50smpi. the pseudo-
pIC50 of the MI samples, 1 the scaling factor for different

Table 1. The Molecular Structures and Fragments of the 34 M2 Channel Inhibitors

Mol F, F, F; Expt pPIC50 code®
8 ! 2
3 (R] in Fz) (R2 in F3)
6 s,
R, :
Mol NH (] R,: H 0.4163 a
NH
R,
N R,: H
MO02 @(‘\ <1|\1 )t 0.4244 a
\
R,
MO03 NH D R,:H 0.7939 a
NH
R,
N )
MO04 \ D R,:H 0.6783 a
N
N\
NH R,
MO5 R,:H 0.8184 a
O
NH R,
MO06 Q\IH R,: H 1.1020 a
N/ R,
MO7 O/ R,: H 0.4279 a
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(Table 1. Contd....)

Mol F, F, F; Expt pPIC50 code®
/ R :
N__ /
MO8 N R,: H 0.4854 b
0 ~
0
\7 R, :
N _~ }
M09 N R,: H 0.5160 b
o} ~
0
H
N— R, :
MI10 C R,: H 0.4615 b
N\/ R, :
M1l R,: H 0.4227 b
N\/
\> Rl :
N
M12 \> R.: H 04268 b
CN
N\/\/ R :
MI3 R,: H 0.4306 b
N\/\/
R, :
Ml14 N \§ R,: H 0.5359 b
CN
> R :
MI5 N\) N R,: H 0.4840 b
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(Table 1. Contd....)

Mol F, F, F; Expt pPIC50 code®
< > R, :
) O
M16 N\) N R,:H 2.2927 b
NH R, :
M17 R,:H 0.6282 b
NH
R,
MI8 N O R,: H 0.3792 c
N
H
R,
M19 I\\I O R,:H 0.5159 c
i
R, :
M20 N O .
j
R,
X )
M21 N R,:H 0.5159 c
M22 R, : H, R, : NH; 0.5000 a
NH,
R,:
M23 R, : H, ( 0.7924 a
NH, NH,
R,:
M24 NH, R, : H, NH, 0.6364 d
NH, NH,
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(Table 1. Contd....)

Mol F, F, F; Expt pPIC50 code®
R,:
M25 NH R : H, ( NH 0.4609 d
O 0
R,
H
H
N N
M26 R : H, )/ 0.48467 d
H,N HON
R,:
M27 NH R, : H, ﬁ NH 0.3651 d
v N—
/ o) / o)
R,:
—
M28 N R, : H, (\ N7 0.4277 d
N——< N,&
/ 10) / 0
R,:
M29 NH R :H, (\NH 0.4402 d
Wfo HN\)QO
R,:
M30 NH R, : H, (\NH 0.5914 d
HN\) HN\)
R,:
NH
M31 f R, : H, (\NH 0.3236 d
N o fo
/ N
R,:
NH
M32 J R : H, (\NH 03841 d
\ )
/ N
R,:
N/ /
M33 \) R, : H, (\ N 0.3504 d
/ N N\)
/
R,:
M34 R, : H, (j 0.4953 d
HN HN

(1) In Table 1, “a” refers to [7]; “b” to [8]; “c” to [53]; and “d” to [52].
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sources (Table 2), and the coefficient 100 is for adjusting the
numerical magnitudes to the region easier to handle.

In the four subsets of experimental data, the amantadine
and rimantadine possess the key common components, and
hence they should have the same bioactivity in the four
sources. Therefore the scaling factor n were calculated based
on the value of IC50,mantadine OF IC50imantadine- In the MI sub-
set of [53], there is rimantadine but no amantadine. For con-
sistency, the scaling factor n for the samples in the subset
from [53] was adapted to:

3, IC50. :
n= L« 12( amatne) 10248747
ICSOrimamadine 3 i=1 ICSOamamadine Icsorimanladine
= %x 0.248747 = 0.0044 2

where the values of i (1, 2, and 3) corresponds to the index
codes “a” [7], “b” [8], and “d” [52] of Table 1, respectively.
Actually the scaling factor of the subset from [53] was de-
rived from the values of amantadine in the other three sub-
sets.

As shown in Table 1, each compound is divided into
three fragments: F;, F, and F;. The F, and F; are the frag-
ments containing substituent group R;, and group R,, respec-
tively. The F; is the remaining part of the molecule after the
fragments F, and F; are deleted. However, for computational
convenience, we used the whole molecule for F;. The sub-
stituents expand from hybrid rings (including nitrogen atoms
or oxygen atoms) to alkyl groups, and hydrogen atoms.

In the current study, the newly-developed fragment-based
QSAR algorithm [46], abbreviated as FB-QSAR, was adop-
ted. FB-QSAR can provide more structural information for
rational drug design and has been successfully used in build-
ing the predictive model of neuraminidase inhibitors for drug
development against HSN1 influenza virus [43]. It involves
the following four steps during practical applications: (1)
choosing the fragments from the relevant molecular family
to allocate the substituents; (2) calculating the descriptor
(such as physicochemical property) for each of the selected
fragments; (3) preparing input files for the training dataset
and test dataset; and (4) developing the predictive model and
using it to predict the bioactivity of the query sample.

It is essential for designing novel synthetic candidates to
find a feasible formulation to reflect the target-inhibitor in-
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teractions [19,27,28]. In this regard, FB-QSAR has provided
an effective model that depends on less descriptors but re-
sults in better prediction [43,46]. The less number of descrip-
tors might also represent a more universal and robust model
with less risk of over-fitting problem [54]. Accordingly, in
using FB-QSAR the selection of molecular descriptors is
important. The notations and physical meanings of the 20
descriptors in the current study are listed in Table 3.

The fundamental equation of FB-QSAR is formulated as
follows:

ib’f (ZL: a/pi,k,/) =pK, (i=12,..,N) 3)

k=1

where N is the number of molecule samples, M the number
of fragments in the molecular family, L the number of phys-
icochemical groperties of fragments, g, the sensitive coeffi-
cient of the /" physicochemical property, b; the weight coef-
ficients of k™ fragment in the molecular family, p;,, the /-th
property of fragment k in molecule 7, and pK; the bioactivity
of i molecule. For the current study case where the number
of molecular fragments is 3 and the number of molecular
descriptors is 20, the FB-QSAR model in this study can be
reduced to

4

ibk (i a p,s,)=pPICS0™"  (i=1,2,---,29)
k=1 =1

where pPIC50,"" is the bioactivity of the i-th compound in
the training dataset.

Beginning from an initial guess of the coefficients
{b%"1=1, the coefficients {a;} and {b;} were solved using
the double least square (IDLS) technique iteratively and
alternately. The convergence criterion for the iterative pro-
cedure was set as follows [43,46]:

= = < &

= B
\/N (pPIC50, — pPIC50\")
i=1

1 N
\/—Z(pPICSOi — pPIC50"")* —

‘le) o™

(e=1x10") 5)

Table2. The IC50s of Amantadine/ Rimantadine and Scaling Factors for Samples from Different Sources
Source” 1C50 H Scaling Degree Note
Amantadine/Rimantadine Scaling Factor (1/IC50) IC50xn
a 1.98 0.5051 1.0000 [7]
b 12.8 0.0781 0.9997 [8]
c 569 0.0044? 0.2464 [53]
d 49.1 0.0204 1.0016 [52]

(1) See footnote (1) of Table 1.
(2) 56 is the IC50 of rimantadine for code c, i.e. from [53].
(3) 0.0044 is the result of 1/IC50,imandatine in [53] multiplied by 0.248747.
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Table3. The Symbols and Physic-Chemical Implications of the 20 Descriptors

Descriptor Class Description Physical Implication
) Log of the octanol/water partition
SlogP 2D physical property
coefficient (including implicit hydrogens).
E sol 3D conformation Solvation free energy.
Electrostatic component of the potential
E ele 3D potential Energy
energy.
van der Waals component of the potential
E vdw 3D potential Energy
energy.
) 3D conformation Dipole moment calculated from the partial
Dipole
dependent charge charges of the molecule.
3D surface area
ASA . Water accessible surface area.
descriptor
Vdw_vol 2D physical property Van der Waals volume.
) 2D adjacency o
Diameter Largest vertex eccentricity in graph.
Descriptor
2D adjacency Balaban averaged distance sum
Balaban]
Descriptor connectivity.
Apol 2D physical property Sum of atomic polarizabilities.
3D conformation
FASA_H Fractional hydrophobic surface area.
dependent charge
3D conformation
FASA_P Fractional polar surface area.
dependent charge
3D conformation Fractional charge-weighted positive
FCASA"
dependent charge surface area.
3D conformation Fractional charge-weighted negative
FCASA”
dependent charge surface area.
2D adjacency
WeinerPol Meiner polarity number.
descriptor
A _count 2D physical property Number of atoms.
A nH 2D atom counts Number of hydrogen atoms.
E str 3D potential Energy Bond stretch energy.
E_strain 3D potential Energy E minus energy of local minimum.
logP(o/w) 2D physical property Log octanol/water partition coefficient.

where Q(“) represents the square root of the summation of
squared differences between the experimental bioactivities
and the predicted bioactivities in the n-th step, and O™V is

that in the (n+1)-th step. Then the coefficients {a;} and {b;},
which are the solution of Eq.4, can be used to predict the
bioactivities of query compounds via the following equation
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3 20 3 20
red __ (n) _ (n) _ (n) (n)
pPICS0™ =Y b"Ag =D a"Ag, =D > b"a"p,,,
k=1 I=1

(G=1,2,...,5) o (6)

where the term bk(“)Agj,k is the contribution of fragment Fj
of the j-th molecule in the test dataset, a,(“)Agj,, the contribu-
tion of physical property P;;, and b,"a,"p;, the contribution
of physical property p;; of fragment k in molecule j, and »
the iteration times.

To demonstrate a comparison of FB-QSAR with the
other QSAR methods, the widely adopted 2D-QSAR [55]
and Free-Wilson QSAR [56] were also applied for the same
study. As pointed by Du et al. [43,46], the 2D-QSAR is a
special case of FB-QSAR with the coefficients {b;} being
fixed to 1, or that the whole molecule is treated as one frag-
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ment. Therefore the 2D-QSAR results can be conveniently
obtained by just taking the first iterative results of FB-
QSAR. In the current study, the 60 (3x20) adjustable vari-
ables were used for the Free-Wilson QSAR algorithm, while
only 23 (20+3) variables used for the FB-QSAR algorithm.

RESULTS

All the results calculated using the methods described in
the last section are listed in Table 4, from which we can see
that the results by the resubstitution test [57] on the training
dataset with the Free-Wilson QSAR are R=1 and Q=0, indi-
cating 100% correct. However, when it was operated on the
test dataset, the Free-Wilson QSAR yielded the worst results
of R=0.1093 and Q=2.7944. This means that the high correct
resubstitution-rate by the Free-Wilson QSAR on the training

Table4. The Calculation Results of Training Set and Test Set Using Three Methods: FB-QSAR, Free-Wilson QSAR, and Tradi-
tional 2D-QSAR
Training ID Expt. pPICs, FB-QSAR Free-Wilson QSAR 2D-QSAR
MO1 0.4163 0.4236 0.4163 0.3779
MO02 0.4244 0.4519 0.4244 0.5545
MO3 0.7940 0.8161 0.7939 0.8216
Mo04 0.6783 0.6446 0.6783 0.6710
MO6 1.1020 0.8139 1.1020 0.8682
MO7 0.4279 0.4482 0.4279 0.3584
MO8 0.4854 0.4635 0.4854 0.6529
M09 0.5160 0.5140 0.5160 0.5943
M10 0.4615 0.5239 0.4615 0.4154
Ml1 0.4227 0.4180 0.4227 0.5192
M13 0.4306 0.4005 0.4306 0.6317
M14 0.5359 0.5052 0.5359 0.3276
M15 0.4840 0.5272 0.4840 0.8317
M16 2.2927 2.2876 2.2927 1.8216
M17 0.6283 0.5771 0.6283 0.3649
M18 0.3792 0.6336 0.3792 0.5717
M19 0.5159 0.5535 0.5159 0.6699
M21 0.5159 0.5153 0.5159 0.5000
M23 0.7924 0.5781 0.7924 0.5203
M24 0.6364 0.6408 0.6364 0.6500
M25 0.4609 0.6367 0.4609 0.5985
M26 0.4847 0.6331 0.4847 0.3938
M27 0.3651 0.3769 0.3651 0.3522
M28 0.4277 0.3666 0.4277 0.3431
M29 0.4402 0.4009 0.4402 0.2509
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(Table 4. Contd....)

Training ID Expt. pPICs, FB-QSAR Free-Wilson QSAR 2D-QSAR
M30 0.5914 0.6664 0.5914 0.9592
M32 0.3841 0.3356 0.3841 0.6302
M33 0.3504 0.3455 0.3504 0.0817
M34 0.4953 0.4387 0.4953 0.5784

R - 0.9620 1.0000 0.8396
o - 0.0980 0.0000 0.1948
Test ID
MO5 0.8184 0.9508 -1.0536 1.0098
MI12 0.4268 0.3166 -1.6125 0.3559
M20 0.8129 0.5720 4.1260 0.5795
M22 0.5000 0.6698 4.9406 3.8882
M31 0.3236 0.2106 1.1506 0.5673
R - 0.8007 0.1093 0.6002
o - 0.1608 2.7944 1.5255

dataset is an over-fitting result with very poor cluster-
tolerant capacity [58] and low predictive accuracy. This is
because it contained 60 adjustable variables that were much
more than the number of the samples involved. In contrast,
for the same testing datasets, the FB-QSAR yielded the best
prediction results of R=0.8007 and Q=0.1608.

The very high success rate achieved by the FB-QSAR
approach is due to the iterative double least square (IDSL)
technique, as demonstrated in (Fig. 1 and Fig. 2). It can be
seen from the two figures that the correlation coefficient R
increases steadily with the iteration steps, while the trend of
the predictive error Q is just the opposite.

098 r
0.96
0.94
0.92
e 09

0.88

0.86

0.84

FB-QSAR availed itself of the 20 descriptors to construct
the successful model. The values of the 20 physicochemical
descriptors are listed in Table 5. The bioactivities of the
query samples were computed using these values and Eq.6.
The comparisons between FB-QSAR and the other two
QSAR methods are shown in Fig. (3).

For facilitating analysis, the 34 compounds in Table 1 are
classified into two groups. In group 1 the substituents R; are
located in the position 2 (F, is in R;), while in group 2 the
substituents R, are in the position 3 (F; is in Ry). In order to
identify the detailed fragment contributions, the values of
fragment contributions of the seven compounds (M05, M06,

0.82 ) L
0 100 200

300 400 500

Iteration

Fig. (1). The correlation coefficients between experimental and predicted bioactivities increase with the iterations. R, is for {a™} iteration
and Ry, is for {bj(“)} iteration. The R, and R, are getting close with the iterations. The first value RH(O):O.839575 is the result of standard 2D-
QSAR and the converged value R, M=0.961976 is the result of FB-QSAR. The remarkable improvement is from the better theoretical model

and advanced mathematical technique of FB-QSAR.
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Fig. (2). The errors between predicted bioactivities and experimental bioactivities of NA inhibitors decrease with the iterations. The Q is the
average square root of the summation of squared differences between predicted bioactivities and experimental bioactivities (cf. Eq.10). O, is
for {a™} iteration and Q, is for iteration. The R, and R, are getting close with the iterations. The first value O, =0.194843 is the result of
standard 2D-QSAR and the converged value Qu(“):0.09958 is the result of FB-QSAR. The remarkable improvement is from the better theo-

retical model and advanced mathematical technique of FB-QSAR.

M12, M16, M20, M23, and M31) are compiled in Table 6.
Among them the molecules M05, M06, M12, M16, and
M20 belong to group 1, while the M23 and M31 belong to
group 2.

It is instructive to point out that the contributions from
fragments F; of the five molecules in group 1 are the same,
and so are the contributions from fragments F, of the two
molecules in group 2. This is because the fragments in each
group have the same chemical structures.

For the seven compounds listed in Table 6, the contribu-
tions of F; are generally larger than those of F5. For example,
the compound with the highest bioactivity, 2.2927, in group
1 is M16; while the corresponding compound in group 2 is

M23 (rimantadine) whose bioactivity is only 0.7924. This
suggests that the fragments in position 2 may be more sensi-
tive than those in position 3. Rimantadine (M23) has a sub-
stituent ethylamine in position 3. If the ethylamine substitu-
ent is moved from position 3 to position 2, its bioactivity
would increase to 4.2076 from the original value 0.7924 ac-
cording to the current FB-QSAR model. Of course, such a
predicted result needs further proofed by experiments.

Of the 34 compounds in Table 1, M05, M12, M20, M22
and M31 were selected as the samples of the test dataset, and
the remaining 29 as the samples of the training dataset. The
criteria for selecting the above five test samples are: (1) they
must be in two different groups; (2) their values must have a

Table 5. Coefficients of 20 Descriptors* in FB-QSAR Model
Descriptor Coefficient Descriptor Coefficient

Diam 0.76899 FASA_P 0.07735
BalabJ -0.02396 FCASA" -0.47807

E ele 0.08539 FCASA” -0.02779

E sol -0.24497 Vdw_vol -0.71044

E vdw -0.02085 WeinerPol 0.09033
Apol 0.04015 A_count -0.21632
Dipole 0.03179 A nH 0.03209
SlogP 0.09165 E str -0.05189
FASA_H 0.08508 E_strain 0.12689

* The physical meanings of the descriptors can be found in Table 2.
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# F-W QSAR

A test set

Expt pPICS0

@ 2D-QSAR

1.5 A test sel

Pred pPIC*

Expt pPIC50

Fig. (3). Correlations of the experimental activity (pPIC50) versus the predicted activity (the data for the training set are marked as 4, and
test set asA) derived from FB-QSAR, Free-Wilson QSAR and 2D-QSAR, respectively. For the Free-Wilson QSAR model, the predicted
values of training set are exactly the same as the experimental data, but the predicted values in the test set nearly show no relationship with
the experimental data. For the FB-QSAR model, all the predicted data concentrate on the diagonal line zone, shows the least deviation. Com-
pared with the above two, 2D-QSAR model is better than Free-Wilson QSAR, but worse than the FB-QSAR.

larger span. The tested outcomes obtained by means of the
three QSAR approaches are listed in Table 4, from which we
can see the FB-QSAR approach yields the best predictive
results.

DISCUSSION

In the area of computer-aided drug design (CADD),
QSAR is one of the most widely used approaches. However,
chemists are often disappointed by the poor predicted results

and the lack of physicochemical explanations for the models
they used. The reason is that the structure-activity optimiza-
tion surface is not as smooth as originally anticipated. The
chemical space, described by QSAR, is filled of potential
cliffs. To describe the potential cliffs in a chemical space
from all aspects, we not only need better physicochemical
descriptors, but also need more structural descriptors. In this
sense, FB-QSAR provides an effective and feasible means to
deal with this kind of problems. Moreover, the iterative dou-
ble least square (IDLS) technique can help the FB-QSAR to

Table 6. Fragment Contributions of 7 Molecules (M05, M06, M12, M16, M20, M22, M23, M31 and M33)

Molecule F1 F2 F3 Pred. Expt.

MO5 1.1054 2.0998 0.0437 0.9508 0.8184

MO06 1.2336 2.0912 0.0437 0.8139 1.1020

Group 1 M12 1.1959 1.5561 0.0437 0.3166 0.4268
M16 1.0226 3.3538 0.0437 2.2876 2.2927

M20 1.4612 2.0769 0.0437 0.5720 0.8129

Group 2 M23 1.1372 1.8429 0.1275 0.5781 0.7924
M31 1.6145 1.8429 0.0178 0.2106 0.3236
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avoid the “over-fitting” problem often encountered in using
the other QSAR methods.

CONCLUSION

It was found through the current study that, among the
existing QSAR methods, the FB-QSAR not only can make
the best predicted results for the adamantane-based Mls in
inhibiting influenza A virus, but also can provide detailed
structural information for the rational drug design. The FB-
QSAR is a powerful tool for the fragment-based drug design.
As revealed by the above fragment analysis (cf. Table 1 and
Table 6), position 2 is more sensitive than position 3. There-
fore, in conducting the adamantane-based antiflu drug de-
sign, our target should be focused on the fragment F; in posi-
tion 2.
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