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Abstract: Because of their high resistance rate to the existing drugs, influenza A viruses have become a threat to human 

beings. It is known that the replication of influenza A viruses needs a pH-gated proton channel, the so-called M2 channel. 

Therefore, to develop effective drugs against influenza A, the most logic strategy is to inhibit the M2 channel. Recently, 

the atomic structure of the M2 channel was determined by NMR spectroscopy (Schnell, J.R. and Chou, J.J., Nature, 2008, 

451,591-595). The high-resolution NMR structure has provided a solid basis for structure-based drug design approaches. 

In this study, a benchmark dataset has been constructed that contains 34 newly-developed adamantane-based M2 inhibi-

tors and covers considerable structural diversities and wide range of bioactivities. Based on these compounds, an in-depth 

analysis was performed with the newly developed fragment-based quantitative structure–activity relationship (FB-QSAR) 

algorithm. The results thus obtained provide useful insights for dealing with the drug-resistant problem and designing ef-

fective adamantane-based antiflu drugs. 
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I. INTRODUCTION 

 The outbreak of H5N1 avian influenza virus (AIV) in 
Asia, Europe and Africa, with rapid spread and high mortal-
ity rate in human, has raised extensive concerns about a 
pending global pandemic [1-4]. Even more seriously is that 
the rapid mutation rate of the viruses will make it very diffi-
cult to contain the influenza outbreak, just like the Hispanic 
case in 1918 and the Asian cases in 1957 and 1968. In the 
early pandemic phase, the only treatments so far available 
are with the neuraminidase inhibitors (NIs), oseltamivir and 
zanamivir [3,5,6], or the M2 channel inhibitors (MIs), aman-
tadine and rimantadine [7,8].  

 As an integral membrane protein in the viral lipid enve-
lope, M2 is a pH-gated proton channel that consists of four 
tightly packed transmembrane (TM) helices [9]. The M2 
channel plays a key role in release of viral nucleoproteins 
and preventing premature conformational rearrangement of 
newly synthesized haemagglutinin during transport to the 
cell surface. Blocking its proton conductance could effec-
tively control the viral replication [10,11]. The adamantane-
based drugs, amantadine and rimantadine [7,8], have been 
used as first-choice antiviral drugs against community out-
breaks of influenza A for many years. But, recent reports 
show that the resistance to these adamantane-based drugs in 
humans, birds and pigs has reached more than 90% [12]. 
Therefore, we are challenged to develop new potent MIs 
(M2 channel inhibitors) against the terrible viruses.  
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 Recently the long-sought 3D (three-dimensional) struc-
ture of the M2 proton channel was successfully determined 
by high-resolution (nuclear magnetic resonance) spectros-
copy [9]. Such a milestone work has provided us with a solid 
foundation to deal with the drug-resistant problem and de-
velop new potent drugs against the influenza viruses [13]. 

 Many lines of evidences have indicated that computa-
tional approaches, such as structural bioinformatics [14-18], 
molecular docking [19-24], molecular packing [25,26], 
pharmacophore modeling [27,28], Mote Carlo simulated 
annealing approach [29], protein subcellular location predic-
tion [30,31], identification of membrane proteins and their 
types [32], identification of enzymes and their functional 
classes [33], identification of GPCR and their types [34,35], 
identification of proteases and their types [36,37], protein 
cleavage site prediction [38-40], signal peptide prediction 
[41,42], and QSAR (quantitative structure–activity relation-
ship) [43-51], can timely provide very useful information or 
insights for both basic research and drug development and 
hence are widely welcome by science community. The pre-
sent study is attempted to apply the newly developed frag-
ment-based QSAR, or FB-QSAR, to investigate the M2 
channel in hope to provide useful insights for developing 
efficient antiflu drugs. 

II. MATERIALS AND METHODS 

 In recent years, a series of new adamantane-based com-
pounds were synthesized by an iterative structure-based 
methods; some of the compounds thus obtained have shown 
equal or better efficacies in comparison with the original 
adamantane-based compounds: amantadine and rimantadine 
[7,8,52]. Many useful insights can be gained about the M2-
inhibiting mechanism by studying the correlation of the 
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physicochemical properties of these compounds with their 
inhibition activities (see, e.g., [13]). However, to the best of 
our knowledge, no report has ever been seen in using QSAR 
to study these new adamantane-based compounds.  

 Listed in Table 1 are 34 adamantane-based M2 inhibitors 
against H3N2 influenza A virus that were collected from 
four different sources [7,8,52,53] in the last 10 years. Since 
the bioactivities from different sources were measured by 
using different methods and concentration units, it is neces-

sary to normalize these values. In view of this, the following 
equation is introduced to normalize the bioactivity values:  

pPIC50
sample

=
1

log(100 IC50
sample

)
         (1) 

where IC50sample are the experimental bioactivities of MI 
(M2 channel inhibitor) samples, pPIC50sample the pseudo-
pIC50 of the MI samples,  the scaling factor for different 

Table 1. The Molecular Structures and Fragments of the 34 M2 Channel Inhibitors 

1

2

3

4
5

6

7

8

9
10

R1

R2

F2

F3

F1

Mol F1 F2 F3 Expt pPIC50 code
 (1) 

1
2

3

45
6

7

8

9
10 (R1 in F2) (R2 in F3)

M01 NH

R1

NH

R2 H 0.4163 a 

M02 N

R1

N

R2 H 0.4244 a 

M03 
NH

R1

NH

R2 H 0.7939 a 

M04 
N

R1

N

R2 H 0.6783 a 

M05 

NH R1

NH
R2 H 0.8184 a 

M06 

NH R1

NH R2 H 1.1020 a 

M07 

N R1

N R2 H 0.4279 a 
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(Table 1. Contd….) 

Mol F1 F2 F3 Expt pPIC50 code
 (1) 

M08 

O

N
R1

O

N R2 H 0.4854 b 

M09 

O

N

R1

O

N
R2 H 0.5160 b 

M10 

H
N R1

N

R2 H 0.4615 b 

M11 

N R1

N

R2 H 0.4227 b 

M12 
N

R1

N

R2 H 0.4268 b 

M13 

N R1

N

R2 H 0.4306 b 

M14 N

R1

N

R2 H 0.5359 b 

M15 
N

N

R1

N

N
R2 H 0.4840 b 
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(Table 1. Contd….) 

Mol F1 F2 F3 Expt pPIC50 code
 (1) 

M16 
N

N

R1

N

N
R2 H 2.2927 b 

M17 

NH R1

NH

R2 H 0.6282 b 

M18 N
H

R1

N
H

R2 H 0.3792 c 

M19 N

R1

N

R2 H 0.5159 c 

M20 N

R1

N
R2 H

0.8129 c 

M21 
N

R1

N R2 H 0.5159 c 

M22 
NH2

R1 H2 R2 NH3 0.5000 a 

M23 

NH2

R1 H2

R2

NH2

0.7924 a 

M24 

NH2

NH2 R1 H2

R2

NH2

NH2
0.6364 d 
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(Table 1. Contd….) 

Mol F1 F2 F3 Expt pPIC50 code
 (1) 

M25 

HN

NH

O

R1 H2

R2

HN

NH

O

0.4609 d 

M26 

H
N

H2N

R1 H2

R2

H
N

H2N

0.48467 d 

M27 

N

NH

O

R1 H2

R2

N

NH

O

0.3651 d 

M28 

N

N

O

R1 H2

R2

N

N

O

0.4277 d 

M29 

HN

NH

O

R1 H2

R2

HN

NH

O

0.4402 d 

M30 

HN

NH
R1 H2

R2

HN

NH 0.5914 d 

M31 

N

NH

O

R1 H2

R2

N

NH

O

0.3236 d 

M32 

N

NH
R1 H2

R2

N

NH
0.3841 d 

M33 

N

N
R1 H2

R2

N

N 0.3504 d 

M34 

HN

R1 H2

R2

HN

0.4953 d 

(1) In Table 1, “a” refers to [7]; “b” to [8]; “c” to [53]; and “d” to [52]. 
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sources (Table 2), and the coefficient 100 is for adjusting the 
numerical magnitudes to the region easier to handle. 

 In the four subsets of experimental data, the amantadine 
and rimantadine possess the key common components, and 
hence they should have the same bioactivity in the four 
sources. Therefore the scaling factor  were calculated based 
on the value of IC50amantadine or IC50rimantadine. In the MI sub-
set of [53], there is rimantadine but no amantadine. For con-
sistency, the scaling factor for the samples in the subset 
from [53] was adapted to: 

=
1

IC50
rimantadine

1

3
(
IC50

rimantadine

IC50
amantadinei=1

3

)
1

IC50
rimantadine

0.248747

0044.0248747.0
56

1
=            (2) 

where the values of i (1, 2, and 3) corresponds to the index 
codes “a” [7], “b” [8], and “d” [52] of Table 1, respectively. 
Actually the scaling factor of the subset from [53] was de-
rived from the values of amantadine in the other three sub-
sets. 

 As shown in Table 1, each compound is divided into 
three fragments: F1, F2 and F3. The F2 and F3 are the frag-
ments containing substituent group R1, and group R2, respec-
tively. The F1 is the remaining part of the molecule after the 
fragments F2 and F3 are deleted. However, for computational 
convenience, we used the whole molecule for F1. The sub-
stituents expand from hybrid rings (including nitrogen atoms 
or oxygen atoms) to alkyl groups, and hydrogen atoms.  

 In the current study, the newly-developed fragment-based 
QSAR algorithm [46], abbreviated as FB-QSAR, was adop-
ted. FB-QSAR can provide more structural information for 
rational drug design and has been successfully used in build-
ing the predictive model of neuraminidase inhibitors for drug 
development against H5N1 influenza virus [43]. It involves 
the following four steps during practical applications: (1)

choosing the fragments from the relevant molecular family 
to allocate the substituents; (2) calculating the descriptor 
(such as physicochemical property) for each of the selected 
fragments; (3) preparing input files for the training dataset 
and test dataset; and (4) developing the predictive model and 
using it to predict the bioactivity of the query sample.  

 It is essential for designing novel synthetic candidates to 
find a feasible formulation to reflect the target-inhibitor in-

teractions [19,27,28]. In this regard, FB-QSAR has provided 
an effective model that depends on less descriptors but re-
sults in better prediction [43,46]. The less number of descrip-
tors might also represent a more universal and robust model 
with less risk of over-fitting problem [54]. Accordingly, in 
using FB-QSAR the selection of molecular descriptors is 
important. The notations and physical meanings of the 20 
descriptors in the current study are listed in Table 3.

 The fundamental equation of FB-QSAR is formulated as 
follows: 

, ,

1 1

( ) pK
M L

k l i k l i
k l

b a p
= =

= ),...,2,1( Ni =          (3) 

where N is the number of molecule samples, M the number 
of fragments in the molecular family, L the number of phys-
icochemical properties of fragments, al the sensitive coeffi-
cient of the lth

 physicochemical property, bk the weight coef-
ficients of kth

 fragment in the molecular family, pi,k,l the l-th 
property of fragment k in molecule i, and pKi the bioactivity 
of ith

 molecule. For the current study case where the number 
of molecular fragments is 3 and the number of molecular 
descriptors is 20, the FB-QSAR model in this study can be 
reduced to 

3 20
train

, ,

1 1

pPIC50      ( 1, 2, , 29)( )k l i k l i
k l

b a p i
= =

= =   (4) 

where pPIC50i
train

 is the bioactivity of the i-th compound in 
the training dataset.  

 Beginning from an initial guess of the coefficients 
{bk

(0}
}=1, the coefficients {al} and {bk} were solved using 

the double least square (IDLS) technique iteratively and 
alternately. The convergence criterion for the iterative pro-
cedure was set as follows [43,46]:  

Q(n+1) Q(n)
=

1

N
(pPIC50i pPIC50i

(n+1) )2

i=1

N

1

N
(pPIC50i pPIC50i

(n) )2

i=1

N

( = 1 10 6 )             (5) 

Table 2. The IC50s of Amantadine/ Rimantadine and Scaling Factors for Samples from Different Sources 

Source
(1) 

IC50 

Amantadine/Rimantadine Scaling Factor (1/IC50) 

Scaling Degree 

IC50

Note 

a 1.98 0.5051 1.0000 [7] 

b 12.8 0.0781 0.9997 [8] 

c 56(2) 0.0044(3) 0.2464 [53] 

d 49.1 0.0204 1.0016 [52] 

(1) See footnote (1) of Table 1.

(2) 56 is the IC50 of rimantadine for code c, i.e. from [53]. 

(3) 0.0044 is the result of 1/IC50rimandatine in [53] multiplied by 0.248747. 
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where Q(n) 
represents the square root of the summation of 

squared differences between the experimental bioactivities 
and the predicted bioactivities in the n-th step, and Q(n+1)

 is  

that in the (n+1)-th step. Then the coefficients {al} and {bk}, 
which are the solution of Eq.4, can be used to predict the 
bioactivities of query compounds via the following equation  

Table 3. The Symbols and Physic-Chemical Implications of the 20 Descriptors  

Descriptor Class Description Physical Implication 

SlogP  2D physical property 
Log of the octanol/water partition  

coefficient (including implicit hydrogens).  

E_sol  3D conformation  Solvation free energy.  

E_ele 3D potential Energy 
Electrostatic component of the potential  

energy.  

E_vdw  3D potential Energy 
van der Waals component of the potential  

energy.  

Dipole  
3D conformation  

dependent charge 

Dipole moment calculated from the partial  

charges of the molecule.  

ASA  
3D surface area 

 descriptor 
Water accessible surface area. 

Vdw_vol 2D physical property Van der Waals volume.  

Diameter 
2D adjacency  

Descriptor 
Largest vertex eccentricity in graph. 

BalabanJ 
2D adjacency 

Descriptor 

Balaban averaged distance sum  

connectivity. 

Apol 2D physical property Sum of atomic polarizabilities. 

FASA_H 
3D conformation 

 dependent charge 
Fractional hydrophobic surface area. 

FASA_P 
3D conformation  

dependent charge 
Fractional polar surface area. 

FCASA+
3D conformation  

dependent charge 

Fractional charge-weighted positive  

surface area. 

FCASA-
3D conformation  

dependent charge 

Fractional charge-weighted negative 

 surface area. 

WeinerPol 
2D adjacency 

descriptor 
Meiner polarity number. 

A_count 2D physical property Number of atoms. 

A_nH 2D atom counts Number of hydrogen atoms. 

E_str 3D potential Energy Bond stretch energy. 

E_strain 3D potential Energy E minus energy of local minimum. 

logP(o/w) 2D physical property Log octanol/water partition coefficient. 



312    Medicinal Chemistry, 2009, Vol. 5, No. 4 Wei et al. 

pPIC50 j
pred

= bk
(n) g j ,k = al

(n) g j ,l = bk
(n)al

(n) pj ,k ,l
l=1

20

k=1

3

l=1

20

k=1

3

(j=1,2,…,5)            (6)  

where the term bk
(n) gj,k is the contribution of fragment Fj,k

of the j-th molecule in the test dataset, al
(n) gj,l the contribu-

tion of physical property Pj,l, and bk
(n)al

(n)pj,k,l the contribution 
of physical property pj,k,j of fragment k in molecule j, and n
the iteration times. 
 To demonstrate a comparison of FB-QSAR with the 
other QSAR methods, the widely adopted 2D-QSAR [55] 
and Free-Wilson QSAR [56] were also applied for the same 
study. As pointed by Du et al. [43,46], the 2D-QSAR is a 
special case of FB-QSAR with the coefficients {bk} being 
fixed to 1, or that the whole molecule is treated as one frag-

ment. Therefore the 2D-QSAR results can be conveniently 
obtained by just taking the first iterative results of FB-
QSAR. In the current study, the 60 (3 20) adjustable vari- 
ables were used for the Free-Wilson QSAR algorithm, while 
only 23 (20+3) variables used for the FB-QSAR algorithm.  

RESULTS 

 All the results calculated using the methods described in 
the last section are listed in Table 4, from which we can see 
that the results by the resubstitution test [57] on the training 
dataset with the Free-Wilson QSAR are R=1 and Q=0, indi-
cating 100% correct. However, when it was operated on the 
test dataset, the Free-Wilson QSAR yielded the worst results 
of R=0.1093 and Q=2.7944. This means that the high correct 
resubstitution-rate by the Free-Wilson QSAR on the training

Table 4. The Calculation Results of Training Set and Test Set Using Three Methods: FB-QSAR, Free-Wilson QSAR, and Tradi-

tional 2D-QSAR  

Training ID  Expt.  pPIC50  FB-QSAR Free-Wilson QSAR 2D-QSAR 

M01 0.4163 0.4236 0.4163 0.3779 

M02 0.4244 0.4519 0.4244 0.5545 

M03 0.7940 0.8161 0.7939 0.8216 

M04 0.6783 0.6446 0.6783 0.6710 

M06 1.1020 0.8139 1.1020 0.8682 

M07 0.4279 0.4482 0.4279 0.3584 

M08 0.4854 0.4635 0.4854 0.6529 

M09 0.5160 0.5140 0.5160 0.5943 

M10 0.4615 0.5239 0.4615 0.4154 

M11 0.4227 0.4180 0.4227 0.5192 

M13 0.4306 0.4005 0.4306 0.6317 

M14 0.5359 0.5052 0.5359 0.3276 

M15 0.4840 0.5272 0.4840 0.8317 

M16 2.2927 2.2876 2.2927 1.8216 

M17 0.6283 0.5771 0.6283 0.3649 

M18 0.3792 0.6336 0.3792 0.5717 

M19 0.5159 0.5535 0.5159 0.6699 

M21 0.5159 0.5153 0.5159 0.5000 

M23 0.7924 0.5781 0.7924 0.5203 

M24 0.6364 0.6408 0.6364 0.6500 

M25 0.4609 0.6367 0.4609 0.5985 

M26 0.4847 0.6331 0.4847 0.3938 

M27 0.3651 0.3769 0.3651 0.3522 

M28 0.4277 0.3666 0.4277 0.3431 

M29 0.4402 0.4009 0.4402 0.2509 
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(Table 4. Contd….) 

Training ID  Expt.  pPIC50  FB-QSAR Free-Wilson QSAR 2D-QSAR 

M30 0.5914 0.6664 0.5914 0.9592 

M32 0.3841 0.3356 0.3841 0.6302 

M33 0.3504 0.3455 0.3504 0.0817 

M34 0.4953 0.4387 0.4953 0.5784 

R --- 0.9620 1.0000 0.8396      

Q --- 0.0980 0.0000 0.1948 

Test ID     

M05 0.8184 0.9508 -1.0536 1.0098 

M12 0.4268 0.3166 -1.6125 0.3559 

M20 0.8129 0.5720 4.1260 0.5795 

M22 0.5000 0.6698 4.9406 3.8882 

M31 0.3236 0.2106 1.1506 0.5673 

R --- 0.8007 0.1093 0.6002 

Q --- 0.1608 2.7944 1.5255 

dataset is an over-fitting result with very poor cluster-
tolerant capacity [58] and low predictive accuracy. This is 
because it contained 60 adjustable variables that were much 
more than the number of the samples involved. In contrast, 
for the same testing datasets, the FB-QSAR yielded the best 
prediction results of R=0.8007 and Q=0.1608.  

 The very high success rate achieved by the FB-QSAR 
approach is due to the iterative double least square (IDSL) 
technique, as demonstrated in (Fig. 1 and Fig. 2). It can be 
seen from the two figures that the correlation coefficient R 
increases steadily with the iteration steps, while the trend of 
the predictive error Q is just the opposite.  

 FB-QSAR availed itself of the 20 descriptors to construct 
the successful model. The values of the 20 physicochemical 
descriptors are listed in Table 5. The bioactivities of the 
query samples were computed using these values and Eq.6. 
The comparisons between FB-QSAR and the other two 
QSAR methods are shown in Fig. (3). 

 For facilitating analysis, the 34 compounds in Table 1 are 
classified into two groups. In group 1 the substituents R1 are 
located in the position 2 (F2 is in R1), while in group 2 the 
substituents R2 are in the position 3 (F3 is in R2). In order to 
identify the detailed fragment contributions, the values of 
fragment contributions of the seven compounds (M05, M06, 

Fig. (1). The correlation coefficients between experimental and predicted bioactivities increase with the iterations. Ra is for {al
(n)

} iteration 

and Rb is for {bj
(n)

} iteration. The Ra and Rb are getting close with the iterations. The first value Ra
(0)

=0.839575 is the result of standard 2D-

QSAR and the converged value Ra
(n)

=0.961976 is the result of FB-QSAR. The remarkable improvement is from the better theoretical model 

and advanced mathematical technique of FB-QSAR. 
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M12, M16, M20, M23, and M31) are compiled in Table 6.
Among them the molecules M05, M06, M12, M16, and  
M20 belong to group 1, while the M23 and M31 belong to 
group 2. 

 It is instructive to point out that the contributions from 
fragments F3 of the five molecules in group 1 are the same, 
and so are the contributions from fragments F2 of the two 
molecules in group 2. This is because the fragments in each 
group have the same chemical structures.  

 For the seven compounds listed in Table 6, the contribu-
tions of F2 are generally larger than those of F3. For example, 
the compound with the highest bioactivity, 2.2927, in group 
1 is M16; while the corresponding compound in group 2 is 

M23 (rimantadine) whose bioactivity is only 0.7924. This 
suggests that the fragments in position 2 may be more sensi-
tive than those in position 3. Rimantadine (M23) has a sub-
stituent ethylamine in position 3. If the ethylamine substitu-
ent is moved from position 3 to position 2, its bioactivity 
would increase to 4.2076 from the original value 0.7924 ac-
cording to the current FB-QSAR model. Of course, such a 
predicted result needs further proofed by experiments.  

 Of the 34 compounds in Table 1, M05, M12, M20, M22 
and M31 were selected as the samples of the test dataset, and 
the remaining 29 as the samples of the training dataset. The 
criteria for selecting the above five test samples are: (1) they 
must be in two different groups; (2) their values must have a 

Fig. (2). The errors between predicted bioactivities and experimental bioactivities of NA inhibitors decrease with the iterations. The Q is the 

average square root of the summation of squared differences between predicted bioactivities and experimental bioactivities (cf. Eq.10). Qa is 

for {al
(n)

} iteration and Qb is for iteration. The Ra and Rb are getting close with the iterations. The first value Qa
(0)

=0.194843 is the result of 

standard 2D-QSAR and the converged value Qa
(n)

=0.09958 is the result of FB-QSAR. The remarkable improvement is from the better theo-

retical model and advanced mathematical technique of FB-QSAR. 

Table 5. Coefficients of 20 Descriptors* in FB-QSAR Model 

Descriptor  Coefficient Descriptor  Coefficient 

Diam 0.76899 FASA_P 0.07735 

BalabJ -0.02396 FCASA+ -0.47807 

E_ele 0.08539 FCASA- -0.02779 

E_sol -0.24497 Vdw_vol -0.71044 

E_vdw -0.02085 WeinerPol 0.09033 

Apol 0.04015 A_count -0.21632 

Dipole 0.03179 A_nH 0.03209 

SlogP 0.09165 E_str -0.05189 

FASA_H 0.08508 E_strain 0.12689 

* The physical meanings of the descriptors can be found in Table 2.
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larger span. The tested outcomes obtained by means of the 
three QSAR approaches are listed in Table 4, from which we 
can see the FB-QSAR approach yields the best predictive 
results.  

DISCUSSION 

 In the area of computer-aided drug design (CADD), 
QSAR is one of the most widely used approaches. However, 
chemists are often disappointed by the poor predicted results 

and the lack of physicochemical explanations for the models 
they used. The reason is that the structure-activity optimiza-
tion surface is not as smooth as originally anticipated. The 
chemical space, described by QSAR, is filled of potential 
cliffs. To describe the potential cliffs in a chemical space 
from all aspects, we not only need better physicochemical 
descriptors, but also need more structural descriptors. In this 
sense, FB-QSAR provides an effective and feasible means to 
deal with this kind of problems. Moreover, the iterative dou-
ble least square (IDLS) technique can help the FB-QSAR to 

Table 6. Fragment Contributions of 7 Molecules (M05, M06, M12, M16, M20, M22, M23, M31 and M33) 

 Molecule    F1    F2     F3   Pred. Expt.  

M05 1.1054  2.0998   0.0437   0.9508 0.8184 

M06 1.2336 2.0912   0.0437   0.8139 1.1020 

M12 1.1959 1.5561   0.0437   0.3166 0.4268 

M16 1.0226 3.3538   0.0437   2.2876 2.2927 

Group 1 

M20 1.4612  2.0769   0.0437   0.5720 0.8129 

M23 1.1372 1.8429   0.1275   0.5781 0.7924 Group 2 

M31 1.6145  1.8429   0.0178   0.2106 0.3236 

Fig. (3). Correlations of the experimental activity (pPIC50) versus the predicted activity (the data for the training set are marked as , and 

test set as ) derived from FB-QSAR, Free-Wilson QSAR and 2D-QSAR, respectively. For the Free-Wilson QSAR model, the predicted 

values of training set are exactly the same as the experimental data, but the predicted values in the test set nearly show no relationship with 

the experimental data. For the FB-QSAR model, all the predicted data concentrate on the diagonal line zone, shows the least deviation. Com-

pared with the above two, 2D-QSAR model is better than Free-Wilson QSAR, but worse than the FB-QSAR. 
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avoid the “over-fitting” problem often encountered in using 
the other QSAR methods.  

CONCLUSION 

 It was found through the current study that, among the 
existing QSAR methods, the FB-QSAR not only can make 
the best predicted results for the adamantane-based MIs in 
inhibiting influenza A virus, but also can provide detailed 
structural information for the rational drug design. The FB-
QSAR is a powerful tool for the fragment-based drug design. 
As revealed by the above fragment analysis (cf. Table 1 and 
Table 6), position 2 is more sensitive than position 3. There-
fore, in conducting the adamantane-based antiflu drug de-
sign, our target should be focused on the fragment F2 in posi-
tion 2.  
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